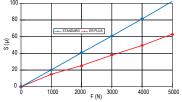


По запросу возможно изготовление следующей продукции:

BT-PLUS (BBT)

Для вспомогательных инструментов с хвостовиками по стандарту BT(MAS-403) доступно исполнение BT-PLUS – которое применяется в беззазорной инструментальной системе, в которой контакт хвостовика со шпинделем станка осуществляется по конусу и по торцу, в пределах упругой деформации шпинделя.

Данная система применяется на станках, которые оснащены специальным исполнением шпинделя, оно отличаются более точным изготовлением. Кроме того хвостовики BT-PLUS обеспечивают полную взаимозаменяемость с обычным исполнением BT и могут использоваться на станках с обычными шпинделями.

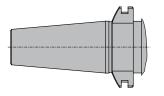

Инструментальная система Стандартная

Инструментальная система BT-PLUS (BBT)

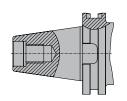
F o

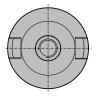
До зажима

После зажима



Без зазорная система крепления инструмента имеет следующие преимущества:


- Максимальная жесткость за счёт большого усилия предварительного натяга и больших опорных поверхностей стыков;
- Максимальный вращающий момент без потери взаимозаменяемости и простоты обслуживания;
- Высокая жесткость благодаря посадке одновременно по конусу и торцу фланца обеспечивает минимальную вибрацию;
- Высокая степень повторяемости при переустановке;
- Повышенная жесткость на изгиб допускает высокие режимы резания, следовательно, повышается производительность.


Специальные и редко используемые хвостовики

Изготовление вспомогательного инструмента с редко используемыми в нашей стране хвостовиками, например стандарт CAT, SK45 или с хвостовиками по ТУ, СТП и т.п. Для заказа необходим чертеж хвостовика, минимальная партия определяется после получения ТЗ.

Прецизионные цанговые патроны тянущего типа FPC

Преимущества

- Высокая точность зажима, биение менее 3 мкм при вылете инструмента 4D;
- Уменьшенные размеры диаметра корпуса по сравнению с другими цанговыми патронами;
- Стандартная балансировка класса G2,5 25000 об/мин.

Область применения

- Обработка формообразующих поверхностей штампов и пресс-форм;
- Обработка цветных металлов на высоких скоростях (авиастроение);
- Прецизионная обработка мелкоразмерным инструментом (приборостроение).

Принцип действия

Закрепление и открепление инструмента происходит посредством втягивания и выталкивания цанги, которое происходит за счет вращения внутреннего центрального затяжного винта. При закреплении затяжной винт вкручивается в резьбовое отверстие расположенное на торце цанги.

Патрон цанговый для цанг тип SK

Патрон цанговый тип SK был предложен компанией NIKKEN. В отличие от двух угловых цанг типа ER у которых основной угол конуса равен 16°, цанги SK имеют угол конуса 8°, что позволило увеличить усилие закрепления примерно в 2 раза, а также минимизировать биение в пределах 3 мкм. Максимально компактная, простая и надёжная конструкция, плоский торец цанги точно без перекосов передаёт усилие от зажимной гайки. Цанговые патроны с цангами SK универсального применения, используются для фрезерования, сверления и нарезания резьбы. Патрон комплектуется гладкой гайкой под роликовый ключ. Рекомендуются для применения на современном высокоскоростном и точном оборудовании.

Силовой прецизионный фрезерный патрон

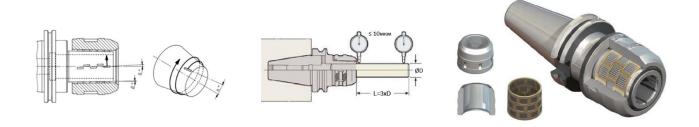
Силовой прецизионный фрезерный патрон обеспечивает высокое усилие зажима и точность. Игольчатый подшипник с четырёхрядным сепаратором, заполненный симметрично расположенными роликами, гарантирует максимальный контакт цанги с зажимаемым инструментом и высокое усилие зажима.

Такая конструкция увеличивает и жёсткость патрона. При использовании силового патрона чистовые и черновые фрезерные операции выполняются без вибраций и проворота инструмента в патроне.

Конструкция посадочного места с канавками на цилиндрической поверхности позволяет обеспечить высокую точность. Масло, грязь и мелкая стружка с хвостовика инструмента остаются в канавках и не влияют на точность и усилие зажима. Кроме того, при подаче СОЖ через центр патрона, канавки являются каналами для подвода СОЖ к инструменту.

Силовой фрезерный патрон обеспечивает радиальное биение не более 10 мкм при вылете инструмента 3D. Это обусловлено применением цилиндрических цанг и оригинальной системы зажима.

Зажимная гайка контактирует с корпусом патрона по двум поверхностям: по цилиндрической поверхности через игольчатый подшипник и по торцу.


Требования и рекомендации к режущему инструменту:

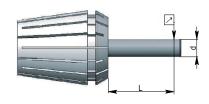
- 1. Хвостовик инструмента должен быть выполнен с полем допуска h6.
- 2. Для достижения максимального усилия зажима не рекомендуется применять инструмент с хвостовиками Weldon и Whistle Notch.
- 3. Длина хвостовика инструмента должна быть больше минимальной длины зажима.
- 4. Хвостовик инструмента должен быть чистым и без следов ржавчины.

			Рекомендуемая дл	ина зажима:			
Диаметр, мм	6	8	10	12	16	20	32
Длина зажима, мм	35	40	45	45	50	55	60

Перед сборкой обязательно очищайте патрон, цангу и инструмент, а также контролируйте отсутствие ржавчины, забоин, стружки и т. д. Не зажимайте инструмент за режущую кромку и не используйте двусторонние фрезы.

Если используется переходная цанга, убедитесь что она установлена до упора фланцем в торец патрона, во избежание перекоса цанги и инструмента. Установите инструмент в патрон и поверните ключом зажимную гайку до контакта с торцем корпуса патрона.

Патрон цанговый тип ER



Цанги типа ER изготавливаются по DIN 6499

Радиальное биение цанг типа ER:

		Радиальное биение, мкм				
d, MM	L, MM	Класс точности 2	Класс точности 1	Высокоточные		
IVIIVI	MIM	символ не ставится	Р	UP		
1	1,6					
1,6	3	0.015	0,01	0,005		
3	6	0,015				
6	10					
10	18	0.00	0.015	0.005		
18	26	0,02	0,015	0,005		
26	34	0,025	0,02	0,010		

Цанги тип ER8 (тип 4004E) и ER11(тип 4008E) изготавливаются по классу точности 2 и 1 (Р)

Цанги тип ER16 (тип 426E) и ER20 (тип 428E) Ø1 и Ø2 изготавливаются по классу точности 2 и 1 (Р)

Цанги ER25/32/40 производятся по классам точности 2, 1(P) и в высокоточном исполнении (UP)

Моменты затяжки для зажимных гаек цанговых патронов:

Цанга	Диаметр гайки, мм	Резьба	Момент, Нм
ER8 (Ø1-Ø5)	12	M10×0,75	6
ER11 (Ø1-Ø7)	16	M13×0,75	20
ER16 (Ø1-Ø10)	32	M22×1,5	70
ER20 (Ø1-Ø13)	34	M25×1,5	100
ER25 (Ø2-Ø16)	42	M32×1,5	130
ER32 (Ø2-Ø20)	50	M40×1,5	170
ER40 (Ø3-Ø26)	63	M50×1,5	220

Установка цанги:

- Заведите цангу канавкой с одной стороны за буртик в отверстии гайки.
- Надавите на цангу в направлении стрелки до щелчка.
- 3. Вставьте инструмент и завинтите гайку.

Извлечение цанги:

- Открутите гайку с патрона и надавите на верхнюю часть цанги Нажмите на цангу вниз.

Неправильная установка цанги может привести к повреждению патрона и несоосности инструмента и

Сначала устанавливайте цангу в гайку, а затем завинчивайте ее в патрон.

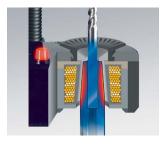
Для получения наилучших результатов, устанавливайте инструмент по всей длине цанги. В любом случае не устанавливайте инструмент менее, чем на 2/3 длины. Неправильная установка инструмента в цангу может привести к повреждениям инструмента и патрона. Инструмент с хвостовиком Weldon должен быть установлен так, чтобы лыска целиком скрывалась в цанге.

Патрон цанговый для цанг типа ER по DIN 6499. Наборы.

Обозначение		Хвостовик	Размер	Диапазон	Цанги	
Набор	Набор		VROCTORNK	газмер	Диапазон	в комплекте
405.62.25.70	0	BT405.R25.70	BT40			
402.62.25.70	0	SK402.R25.70	SK40			
505.62.32.70	0	BT505.R32.70	BT50		0.16	2,3,4,5,6,7,8,9, 10, 11,12,13, 14,15,16
502.62.R5.60	0	SK502.R25.60	SK50	ER 25	2-16	
A63.62.25.75	0	A63.R25.75	HSK63			
A100.62.25.100	0	A100.R25.100	HSK100			
405.62.32.70	0	BT405.R32.70	BT40			3,4,5,6,7,8,9, 10,11,12,13, 14,15,16,17, 18,19,20
402.62.32.70	0	SK402.R32.70	SK40		2-20	
505.62.40.80	0	BT505.R40.80	BT50	ER 32		
502.62.32.70	0	SK502.R32.70	SK50	ER 32		
A63.62.32.75	0	A63.R32.75	HSK63			
A100.62.32.100	0	A100.R32.100	HSK100			
405.62.40.80	0	BT405.R40.80	BT40			
402.62.40.80	0	SK402.R40.80	SK40			4,5,6,7,8,9,
505.62.50.100	0	BT505.R50.100	BT50	FR 40	3-26	10,11,12,13,
502.62.40.80	0	SK502.R40.80	SK50	EK 4U		14,15,16,17, 18,19,20,21,
A63.62.40.80	0	A63.R40.80	HSK63			22,23,24,25,26
A100.62.40.100	0	A100.R40.100	HSK100			

Системы крепления с термическим зажимом

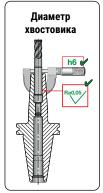
Принцип действия термозажимных патронов


Принцип действия термозажимных патронов (термопатронов) основан на свойстве металлов расширяться при нагревании . Патрон помещается в специальный индукционный нагреватель, нагревается в нем до температуры в несколько сот градусов, за счет чего отверстие под хвостовик инструмента увеличивается в диаметре. Затем в патрон вставляется инструмент, после чего патрон охлаждается на воздухе либо в специальном устройстве. В результате патрон фактически составляет с инструментом одно целое без каких-либо зазоров, что обеспечивает высокую степень сбалансированности и позволяет работать на высоких скоростях вращения. Разжим происходит аналогично, в обратной последовательности

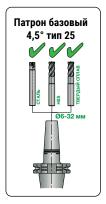
При правильной эксплуатации достигается высокая точность зажима инструмента, большой передаваемый крутящий момент, длительный период эксплуатации. Термопатроны просты в использовании и не требуют технического обслуживания.

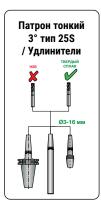
Характеристики патронов с термозажимом

- Максимальная частота вращения 40000 об/мин (для работы с максимальной частотой вращения рекомендуется дополнительная балансировка);
- Хвостовик зажимаемого инструмента цилиндрический, точность не ниже h6;



Эксплуатация патронов с термозажимом


- 1. Очистите хвостовик инструмента и зажимное отверстие, проверьте на отсутствие повреждений (не используйте поврежденный инструмент).
- 2. Проведите предварительную регулировку вылета инструмента, поворачивая регулировочный винт с помощью шестигранного Т-образного ключа.
- 3. Нагревайте область зажима термопатрона с помощью соответствующего устройства для нагрева, это приведет к расширению зажимного отверстия.
- 4. Установите хвостовик инструмента до упора в регулировочный винт.
- 5. Охладите термопатрон с установленным в него инструментом.
- 6. Для извлечения инструмента также необходимо нагреть область зажима.



Во время и после процесса установки/извлечения инструмента температура в зоне нагрева составляет приблизительно 400°C.

Во избежание ожога, пользуйтесь специальными защитными перчатками.

Соблюдайте минимальную длину зажима. В противном случае не будет обеспечиваться гарантированный передаваемый момент вращения.

Базовый патрон с термозажимом, 4,5° имеет диапазон закрепления 6 — 32 мм, Предназначен для выполнения всех возможных фрезерных операций где необходима высокая точность и мощное усилие закрепления. Возможно закрепление инструментов из быстрорежущей стали и со стальным хвостовиком

Патрон с термозажимом, тонкий, 3° применяется для обработки труднодоступных мест, диапазон закрепления 3— 16 мм, только для цельно твердосплавного инструмента.

Кроме термопатронов, которые устанавливаются непосредственно в шпиндель станка, предлагаются переходники— удлинители с принципом термозажима, Данные удлинители имеют цилиндрический хвостовик или хвостовик ER. Применение подобной оснастки расширяет технологические возможности оборудования.

Патрон сверлильный высокоточный, тип РСР

Технические характеристики:

Диапазон зажима	1-10 мм	1-13 мм	1-16 мм
Мах радиальное биение при моменте затяжки	0,03 мм при 10 Нм	0,03 при 15 Нм	0,03 при 15 Нм
Мах крутящий момент на инструменте	30 Нм при 10 Нм	40 Нм при 15 Нм	45 Нм при 15 Нм
при моменте затяжки	-	80 Нм при 20 Нм	90 Нм при 20 Нм
Мах допустимый момент затяжки (на ключе)	15 Нм	20 Нм	20 Нм
Мах допустимая частота вращения	35000 об/мин	35000 об/мин	35000 об/мин

Для обеспечения бесперебойной работы сверлильного патрона и предотвращению производственного травматизма следуйте следующим инструкциям:

- 1. Установку инструмента производите при остановленном шпинделе или вне станка.
- 2. Сверлильный патрон зажимается с помощью шестигранного ключа сбоку патрона посредством вращения привода. Чтобы разжать сверлильный патрон, поворачивайте ключ против часовой стрелки, а чтобы зажать - по часовой. Метки "+" и "-" на патроне означают "зажим" и "разжим" соответственно.
- 3. Хвостовик зажимаемого инструмента должен размещаться по всей длине зажимных кулачков. Не зажимайте инструмент с коническим хвостовиком.
- 4. Не превышайте значения рекомендуемого крутящего момента для обеспечения правильного зажима инструмента. Не используйте какие-либо удлинители для зажима. Применяя больший крутящий момент, чем указаный в таблице, можно повредить коническую шестерню.
- 5. Проверьте соосность после зажатия и убедитесь, что инструмент надежно закреплён.
- 6. После использования сверлильные патроны необходимо протирать специальной тканью для предотвращения коррозии. Перед длительным хранением сверлильных патронов необходимо смазать их маслом.
- 7. Не используйте сжатый воздух для чистки сверлильных патронов, т. к. мелкая стружка может попасть в зажимной механизм.

Оправка для инструмента с цилиндрическим хвостовиком с возможностью компенсировать биение инструмента

Регулируемый патрон имеет 4 осевых регулировочных винта в нижней зоне крепления инструмента и 4 осевых винта в верхней зоне. С их помощью производится устранение биения режущего инструмента.

Регулировка осуществляется следующим образом:

- 1. Закрутите винты А и В пока они не коснутся поверхности инструмента.
- 2. Закрутите оставшиеся винты до касания поверхности хвостовика инструмента.
- 3. Установите наконечник индикатора в точку Z. Регулировочными винтами C, D, E, F отрегулируйте биение инструмента закручивая поочерёдно с разным усилием противоположные винты. Например с начала винт D, потом винт F.
- 4. Переместите индикатор на конец инструмента, как показано на риунке 1 или 2. Использую винты А, В,
- G, H отрегулируйте биение инструмента закручивая и отпуская, поочерёдно противоположные винты.

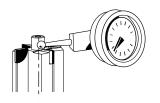
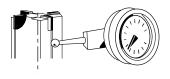
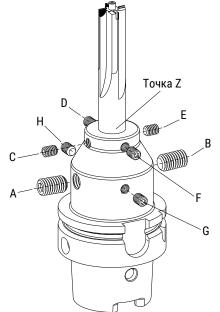




Рис. 1

Преимущества использования регулируемой оправки:

1. Увеличение точности обрабатываемого отверстия.

Пример операции развёртывания:

- инструмент: твёрдосплавная развёртка;
- отверстие: Ø5+0,031 мм, глубина 15 мм;
- режимы резания: скорость V=30 м/мин, подача So=0,125 мм/об;
- охлаждение: эмульсия 8%.
- 2. Улучшение шероховатости обработанной поверхности.

Пример фрезерования концевой фрезой: стандартный патрон: высота микронеровностей 15 мкм, регулируемая оправка: высота микронеровностей 2 мкм.

3. Увеличение срока служб.

	Стандартный патрон	Регулируемый
Радиальное биение, мкм	12	3
Отклонение от цилиндричности, мкм	13	4

Патрон гидропластовый

Гидропластовый патрон имеет отличное соотношение простоты использования, точности и высокого зажимного усилия при прямом закреплении.

Высокая универсальность: непосредственное крепление различных диаметров $(\emptyset6 - \emptyset32)$, различные варианты исполнения рабочей части:

- Универсальный тип 65;
- Усиленный тип 67:
- Узкий тип 68.

Промежуточные втулки позволяют зажимать инструменты разного диаметра с помощью одного и того же держателя.

Компактная конструкция, оптимальная для обработки в труднодоступных местах.

Стабильная производительность с постоянным биением ≤ 0,003 мм при 2,5×D.

Подходит для высокоскоростной обработки с точностью балансировки G2,5 при 25 000 об/мин.

Конструкция обладает эффектом гашения вибрации, обеспечивая хорошую шероховатость обрабатываемой детали и защищает шпиндель станка.

Быстрая смена инструмента, не требуется специальное оборудование или динамометрический ключ.

Может использоваться для закрепления инструментов с хвостовиками типа Weldon.

Для нагруженных операций рекомендуется применять усиленный гидропластовый патрон тип 67 он предназначен для обеспечения более высокого усилия закрепления с сохранением высокой точности, для операций, фрезерование, сверление, рассверливание, нарезание резьбы и высокопроизводительного фрезерования (НРС). Срок службы усиленного патрона примерно в 3 раза больше по сравнению с универсальным типом.

Эксплуатация гидропластовых патронов:

- 1. Очистите хвостовик инструмента и зажимное отверстие, проверьте на отсутствие повреждений (не используйте поврежденный инструмент).
- 2. Проведите предварительную регулировку вылета инструмента, поворачивая регулировочный винт с помощью шестигранного Т-образного ключа.
- 3. Установите хвостовик инструмента до упора в регулировочный винт.
- 4. Затяните зажимной винт с усилием примерно 7 Нм.
- 5. Чтобы извлечь режущий инструмент, отверните зажимной винт против часовой стрелки на 3-7 обор.
- 6. Использовать только с хвостовиком, диаметр которого, совпадает с номиналом цанги и выполнен с полем допуска h6.

Универсальный тип 65 / Узкий тип 68:

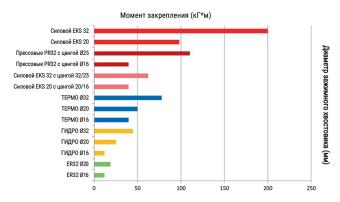
	Фрезер	Сверление	Deepent perme		
HPC*	НРС* Черновое Получистовое Чистовое				Развертывание



Усиленный тип 67:

	Фрезе	Changaille	D		
HPC*	Черновое	Получистовое	Чистовое	Сверление	Развертывание

Область применения



Область применения наиболее популярных типов фрезерных патронов

Термозажим Гидропластовый Прессовый Силовой патрон Прессовый Крутящий момент

Сравнение момента закрепления для зажимных устройств

